Adjoint methods for car aerodynamics
نویسنده
چکیده
The adjoint method has long been considered as the tool of choice for gradient-based optimisation in computational fluid dynamics (CFD). It is the independence of the computational cost from the number of design variables that makes it particularly attractive for problems with large design spaces. Originally developed by Lions and Pironneau in the 70’s, the adjoint method has evolved towards a standard tool within the development processes of the aeronautical industries. Its uptake in the automotive industry, however, lags behind. The first systematic applications of adjoint methods in automotive CFD have interestingly not taken place in the classical shape design arena, but in a relatively young discipline of sensitivity-based optimisation: fluid dynamic topology optimisation. While being an established concept in structure mechanics for decades already, its transfer to fluid dynamics took place just ten years ago. We demonstrate that specifically for ducted flow applications, like airducts for cabin ventilation or engine intake ports, it constitutes a very powerful tool and has matured over the last years to a level that allows its systematic usage for various automotive applications. To drive adjoint-based shape optimisation to the same degree of maturity and robustness for car applications is the subject of ongoing research collaborations between academia and the car industry. Achievements and challenges encountered during these efforts are presented.
منابع مشابه
High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics
2 Discretization 9 2.1 The Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Solution Approximation . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 Discrete System . . . . . . . . . . . . . . . . . ....
متن کاملWing Planform Optimization via an Adjoint Method
This dissertation focuses on the problem of wing planform optimization for transonic aircraft based on flow simulation using Computational Fluid Dynamics(CFD) combined with an adjoint-gradient based numerical optimization procedure. The adjoint method, traditionally used for wing section design has been extended to cover planform variations and to compute the sensitivities of the structural wei...
متن کاملComprehensive Investigating on the Aerodynamic Influences of the Wheel Contact Patch
Computational fluid dynamics is implemented to investigate the influence of the wheel contact patch on the global car aerodynamics. Two main aspects of the problem are the contact step and patch shape. Three important parameters: step height, cut angle, and tire tread shape are taken into consideration. For validations of the numerical results, the experimental data are also considered. The obt...
متن کاملError estimation and adjoint-based refinement for multiple force coefficients in aerodynamic flow simulations
In this talk we give an overview of recent developments on adaptive higher order Discontinuous Galerkin discretizations for the use in computational aerodynamics at the DLR in Braunschweig. In particular, this includes some of the most recent developments and results achieved in the EU project ADIGMA. Important quantities of interest in aerodynamic flow simulations are the aerodynamic force coe...
متن کاملHigh-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet
This paper focuses on the demonstration of an integrated aerostructural method for the design of aerospace vehicles. Both aerodynamics and structures are represented using high-fidelity models such as the Euler equations for the aerodynamics and a detailed finite element model for the primary structure. The aerodynamic outer-mold line and a structure of fixed topology are parameterized using a ...
متن کامل